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ABSTRACT

A group G is called unsplittable if Hom(G, Z) = 0 and this group is not a

non-trivial amalgam. Let X be a tree with a countable number of edges

incident at each vertex and G be its automorphism group. In this paper

we prove that the vertex stabilizers are unsplittable groups.

Bass and Lubotzky proved (see [3]) that for certain locally finite trees

X, the automorphism group determines the tree X (that is, knowing the

automorphism group we can “construct” the tree X). We generalize this

Theorem of Bass and Lubotzky, using the above result. In particular we

show that the Theorem holds even for trees which are not locally finite.

Moreover, we prove that the permutation group of an infinite count-

able set is unsplittable and the infinite (or finite) cartesian product of

unsplittable groups is an unsplittable group as well.

0. Introduction

In this paper we study the rigidity of automorphism groups of trees.

That is, if X is a tree and G = Aut(X) is its automorphism group, we study

conditions under which the group G determines the tree X . Or, more generally,

given two trees X1, X2 with G1 = Aut(X1) and G2 = Aut(X2), we study when

an isomorphism G1 → G2 is induced by an isomorphism X1 → X2.
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Such questions, for symmetric spaces, have been studied in E. Cartan’s theory

(cf. [7]), for homeomorphism groups of topological spaces in [9], and for rooted

trees in [10].

Let X be a tree, G = Aut(X) and let e be an edge starting from the vertex

x = ∂0(e) of X . We set Gx = {g ∈ G : gx = x}, Ge = {g ∈ G : ge = e}

and iG(e) := [G∂0(e) : Ge]. Bass and Lubotzky answered the above questions

positively in the case of locally finite trees X with iG(e) ≥ 3 for each e ∈ EX.

As Bass and Lubotzky observed, the condition of being locally finite is quite

restrictive (for example, group amalgams can act on trees which are not locally

finite [11]) but necessary for their work (see [3]).

In this paper we work with trees which are not necessarily locally finite.

Also, we study the case where we have iG(e) ≥ 2 for each e ∈ EX. We restrict

ourselves to trees where every vertex has a countable number of edges incident

at it. This assumption will hold even if it is not mentioned explicitly.

Our method is the following: Let X be a tree and let G = Aut(X). We want

to “construct” the tree X out of the group G. In particular, we construct a tree

Y which is isometric to the tree X , with vertex set V Y = {Gx : x ∈ V X} and

edge set EY = {(Gx, Gy) : x, y adjacent vertices of X}.

(I) We determine conditions under which the set of the vertex stabilizers

{Gx : x ∈ V X} determines the tree X (that is, Y should be a tree

isometric to the tree X).

(II) We determine conditions under which the group G determines the set

{Gx : x ∈ V X} algebraically. These conditions constitute a set of

algebraic properties satisfied only by the groups Gx (of all subgroups of

G). Thus, in conjunction with (I) we can construct the tree Y .

The solution in (I) is the condition iG(e) ≥ 2 for each e ∈ EX.As for (II), the

most important algebraic property which characterizes the set {Gx : x ∈ V X},

is that the groups Gx are unsplittable. (A group H is called unsplittable if

Hom(H,Z) = 0 and this group is not a non-trivial amalgam, Section 2).

The steps above are the main steps also used by Bass and Lubotzky in [3]. The

main difference between their result and one of the main results of this paper, is

that here we prove that the vertex stabilizers of the tree are unsplittable, even

in the case where the tree is not locally finite. More specifically:
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Theorem 5.7: Let X be a tree with a countable number of edges incident at

each vertex and let G = Aut(X). Then for each vertex v of X the group Gv is

unsplittable.

In the Rigidity Theorem of Bass and Lubotzky the condition that the group

G = Aut(X) has no inversions must be added. This is obvious in Corollaries

2.7 and 2.9 in [3], which are used in the proof of the Rigidity Theorem in [3].

This is quite inconvenient because knowing the group G does not mean that its

subgroup G0 can be determined (G0 as in [3] is the subgroup of G of index ≤ 2

containing no inversions, but containing all stabilizers Gx, x ∈ V X).

This problem is dealt with in this paper by choosing other algebraic properties

than those chosen by Bass and Lubotzky which algebraically determine the set

{Gx : x ∈ V X} whether the group G has inversions or not.So, we define A(G)

to be the set of subgroups H ≤ G satisfying:

(i) H is maximal among unsplittable subgroups of G

(ii) H has a countable number of conjugates and

(iii) we have [H : H ∩ K] 6= 2 for every other such subgroup K.

We prove that A(G) = {Gx : x ∈ V X}.

To recover Y , we define E(G) to be the set of elements (K1, K2) ∈ A(G) ×

A(G) satisfying:

(i) K1 6= K2 and

(ii) the group K1∩K2 is maximal among the supgroups of the form L1∩L2,

with (L1, L2) ∈ A(G) × A(G) and L1 6= L2.

Then we prove that EY = E(G). Bearing the above notations in mind, our

main result is the following:

Rigidity Theorem 6.9: I) Let X be a tree and let G = Aut(X). We

suppose that X has a countable number of edges incident at each vertex and

iG(e) ≥ 3 for each edge e. Then,

if Y is a tree with V Y = {Gx : x ∈ V X} and EY = {(Gx, Gy) : x, y adjacent

vertices of X}, we have:

(a) A(G) = V Y

(b) E(G) = EY

(c) The map σ : X → Y with σ(x) = Gx is an isomorphism of G-trees (That

is, the group G determines the tree X)

(d) The map ad : G → Aut(G) is an isomorphism.
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II) Let X1, X2 be trees with G1 = Aut(X1), G2 = Aut(X2) such that

iG1(e) ≥ 3 for each e ∈ EX1 and iG2(w) ≥ 3 for each w ∈ EX2. Then

if a : G1 → G2 is a group isomorphism, there is a unique tree isomorphism

σ : X1 → X2 such that a = ad(σ).

For example, let X = Xn,m denote the biregular bipartite tree of degrees

n, m ≥ 2 and Gn,m = Aut(X). A consequence of the Rigidity Theorem if

n, m, n
′

, m
′

≥ 3 is that: Gn,m ≃ Gn
′
,m

′ ⇔ {n, m} = {n
′

, m
′

}.

For n = m, Xn := Xn,n is the n-regular tree, and the above result is due to

Znoiko [13].

The bounds n, m ≥ 3 have been necessary until now (see introduction in [3]).

Indeed, we note that for the trees Xn,2 and Xn, we have Gn,2 ≃ Gn,n, since

Xn,2 is the barycentric subdivision of Xn. However, Xn,2, Xn do not differ

geometrically (that is, they have homeomorphic geometric realizations).

In Section 7, we extend our Rigidity Theorem in the case where iG(e) ≥ 2

for every edge e of X . That is, we construct a tree from the group G with

geometric realization homeomorphic to that of X . Specifically, the new tree

will be obtained from subdivisions of some edges of the tree X .

Before formulating the Topological Rigidity Theorem 7.7 we give a definition:

If X is a tree with G = Aut(X), we define X to be the tree obtained from X by

subdividing those edges e of X for which there is some g ∈ G such that ge = e.

In Section 7 we define A(G), E(G) in a similar way as in (6.9) and we show the

following.

Topological Rigidity Theorem 7.7: I) Let X be a tree and let G =

Aut(X). We suppose that X has a countable number of edges incident at

each vertex and iG(e) ≥ 2 for each edge e. Then, if Y is a tree with V Y =

{Gx : x ∈ V X} and EY = {(Gx, Gy) : x, y adjacent vertices of X}, we have:

(a) A(G) = V Y

(b)E(G) = EY

(c) The map σ : X → Y with σ(x) = Gx is an isomorphism of G-trees (That

is, the group G determines the tree X)

(d) The map ad : G → Aut(G) is an isomorphism.

II) Let X1, X2 be trees with G1 = Aut(X1), G2 = Aut(X2) such that

iG1(e) ≥ 2 for each e ∈ EX1 and iG2(w) ≥ 2 for each w ∈ EX2. Then

if a : G1 → G2 is a group isomorphism, there is a unique tree isomorphism

σ : X1 → X2 such that a = ad(σ).
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Referring to the previous example, we have Gn ≃ Gn,2 and Xn ≈ Xn,2

(Xn,2 = Xn,2).

We remark that the restriction iG(e) ≥ 2 can not be removed. Indeed, one can

easily construct different finite trees, which have trivial automorphism group.

This paper contains also some remarks about unsplittable groups:

We prove in Corollary 5.2 that the infinite (or finite) cartesian product of

unsplittable groups is an unsplittable group as well. In Corollary 5.9 we prove

that the automorphism group of a rooted tree with a countable number of edges

incident at each vertex is an unsplittable group.

Consequently, the permutation group Sk of a set Ω with card Ω = k for 1 ≤

k ≤ ∞ is an unsplittable group. In particular, the wreath product Sk0 ≀Sk1 ≀ . . .,

where ki ∈ N, 1 ≤ ki ≤ ∞ is an unsplittable group (where the length of the

product can be infinite or finite).

Recently, Max Forester [6] also dealt with the Rigidity Theorem of Bass and

Lubotzky. He has achieved a generalization of that theorem but from a different

point of view.

This work was carried out under the supervision of Professor Panos Papasoglu

who should take credit for the main idea of this paper. Moreover, I would like

to thank Professors Dimitrios Varsos and Olympia Talleli for the time they put

into discussing this paper with me. I would especially like to thank Professor

Ioanni Emmanouil for inspiring conversations on unsplittable groups.

1. Tree Automorphisms

1.1. Definitions-Terminology. A set X with a G-action is called a G-set.

We denote by Gx the set {g ∈ G : gx = x} (i.e. Gx = stabG(x)) and we set

iG(x) = [G : Gx] = card(G · x).

A graph X consists of a set V = V (X) of vertices and a set E = E(X) of

oriented edges. An edge e has end points ∂0(e), ∂1(e) ∈ V , and orientation

reversal e ∈ E, with e 6= e, e = e and ∂i(e) = ∂1−i(e), i = 0, 1. For x ∈ V

we put E0(x) = {e ∈ E : ∂0(e) = x} (the edges starting from x) and deg(x) =

card(E0(x)).

Let X be a tree. An X-ray is a half infinite linear subtree. Two X-rays L, L′

are equivalent if L ∩ L′ is an X-ray. The equivalence classes are called ends

of X . If ε is one end and x ∈ V , then there is a unique X-ray representing ε

starting at x, which we denote by [x, ε). If ε′ 6= ε is another end, then the set
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of vertices x ∈ V such that [x, ε)∩ [x, ε′) = {x} form the vertices of a bi-infinite

linear subtree, denoted by (ε, ε′).

1.2. Hyperbolic Length of tree automorphisms. Let X be a tree, with

automorphism group G = Aut(X). If g ∈ G, Tits has shown ([12] or [11]) that

there are three possible cases:

Case 1 (inversions): There is a (necessarily unique) geometric edge {e, e}

inverted by g : ge = e. Then for all vertices of X , d(gx, x) = 2d(x, e) + 1

is odd. When g ∈ G is an inversion, we put l(g) = 0 and Xg = ∅. When

g ∈ G is not an inversion, we define l(g) = minx∈V d(gx, x) and V Xg =

{x ∈ V : d(gx, x) = l(g)} (V Xg are the vertices of a subtree Xg of X).

Case 2 (elliptic elements): These are non inversions g for which l(g) = 0. Then

Xg is the tree of fixed points of g. Any 〈g〉-invariant subtree of X meets Xg.

Case 3 (hyperbolic elements): These are the g’s for which l(g) > 0. In this

case Xg is a bi-infinite linear subtree called the g-axis along which g induces

a translation of amplitude l(g) toward one of the ends of Xg, which we denote

εg. Any 〈g〉-invariant subtree of X contains Xg.

If g, h ∈ G then l(ghg−1) = l(h), and Xghg−1 = gXh. If h is not an inversion,

then for all x ∈ V we have d(gx, x) = l(g) + 2d(x, Xg).

1.3. H-graph. Let H be a group. An H-graph is a graph X with an H-action,

given by a homomorphism p : H → G = Aut(X).

For x ∈ V X we have iH(x) = [H : Hx] = card(Hx). Moreover Hx acts

on E0(x) and, by abuse of notation, we put iH(e) = iHx
(e) = [Hx : He] =

card(Hxe), where e ∈ E0(x).

The H-tree X is said to be without inversions if e /∈ He, for all e ∈ EX.

Moreover we have the associated hyperbolic length function l = lX : H → Z

defined by l(g) = l(p(g)). We also put Xg = Xp(g) for g ∈ H . Finally, we set

XH = {x ∈ X : hx = x ∀h ∈ H}.

Proposition 1.4 ([12, (3.4)] or [1, (7.5)]): Let X be an H-tree with l(H) = {0}

(l = lX). Then exactly one of the following occurs.

(1) H fixes some vertex of X .
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(2) H contains an inversion: g ∈ H, e ∈ EX and ge = e. Then He = {e, e}

and {e, e} is the unique H-invariant geometric edge of X .

(3) There is a unique end ε of X fixed by H . If x ∈ V X and the ray [x, ε)

has vertex sequence x0 = x, x1, x2, . . . , then Hxn
≤ Hxn+1 , with strict

inclusion infinitely often, and H =
⋃

n≥0 Hxn
.

Definition 1.5: Let X be a tree and ε be an end of X . We put

Hε = {g ∈ H : gε = ε}

the stabilizer of the end ε.

2. Unsplittable groups

Proposition 2.1 ([2, 3.9]): Let H be a group. The following conditions are

equivalent:

(1) For any H-tree X , lX(H) = {0}

(2) For any H-tree X without inversions, each element of H fixes some

vertex of X .

(3) (a) Hom(H,Z) = 0 and

(b) H is not a non-trivial amalgam, that is, if H∼=A∗CB then C = A

or C = B.

Definition 2.2: A group satisfying the conditions of Propositions (2.1) is said to

be unsplittable.

Proposition 2.3 ([11, Prop. 27, Chap. 6]): Let G be a finitely generated nilpo-

tent group acting without inversions on a tree X . Then the next two cases are

mutually exclusive and exhaust all possibilities:

(a) G has a fixed point.

(b) There is an X-ray stable under G, on which G acts by translations by

means of a non-trivial homomorphism G → Z.

Corollary 2.4: Ai are unsplittable groups and

G = ×iAi = {(g1, g2, . . . , gn, 1, 1, . . .) : gi ∈ Ai, n ∈ N},

then G is unsplittable.

Proof. Let G act on a tree X without inversions. Then Ai will act on X as

well without inversions. Let g = g1g2 · · · gn = (g1, g2, . . . gn, 1, 1, . . .) ∈ G, where
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the element gi ∈ Ai is identified with the element gi = (1, . . . , 1, gi, 1, . . .) ∈ G

(with gi in the i place). Since A1, A2, . . . , An are unsplittable then g1, . . . , gn

are elliptic. Then, applying Proposition 2.3 to the group 〈g1〉 × · · · × 〈gn〉 we

have that there is v ∈ V X such that giv = v, i = 1, 2, . . . , n and so gv = v, that

is, G is an unsplittable group.

3. Strict action

Definition 3.1: Let X be an H-set. It is said to be a strict H-set if any of the

following equivalent conditions holds:

(a) XHx = {x} for each x ∈ X , where XHx is the set of fixed points by Hx.

(b) If x, y ∈ X such that Hx ≤ Hy then x = y.

Definition 3.2: An H-graph X is called strict if:

(a) V X is a strict H-set, and

(b) for all x ∈ V X , E0(x) is a strict Hx-set.

Lemma 3.3 (see [3]): Let X be an H-tree.

(a) The following conditions are equivalent:

(1) V X is a strict H-set.

(2) iH(e) > 1, for all e∈EX .

(3) For all x ∈ V X , Hx fixes no edges of X .

(b) If x ∈ V X is not a terminal vertex, that is, if deg(x) 6= 1 and if E0(x)

is a strict Hx-set, then iH(e) ≥ 3 for all e∈E0(x).

(c) If X has no terminal vertices then the condition “V X is a strict H-set”

is implied by the condition “for all x ∈ V X, E0(x) is a strict Hx-set”.

The following Proposition is a special case of Proposition 3.7[3].

Proposition 3.4: If X is a tree and G = Aut X with iG(e) ≥ 3, then X is a

strict G-tree.

4. Geometrical Tree determination

In this section we show that the set {Gx : x ∈ V X} determines the tree X

under the condition iG(e) ≥ 2.
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4.1. Terminology. Let X be a tree and G = Aut(X) with iG(e) ≥ 2 for all

e∈EX . We define a G-graph Y with set of vertices V Y = {Gx : x ∈ V X} and

set of edges EY = {(Gx, Gy) : x, y adjacent vertices of X }.

Proposition 4.2: Using the above notation we define a map f : X → Y , with

f(x) = Gx and f(e) = (G∂0(e), G∂1(e)) for all x ∈ V X, e ∈ EX. Then, f is a

tree isomorphism, where Y is regarded as a G-graph via conjugation.

Proof. Since V X is a strict G set (from Lemma 3.3), one can easily prove that

Y is a G-tree and f is a G-graph morphism. From the strictness of V X as

a G-set, it follows that f is one to one on the vertices. Now, if f(e) = f(w)

with e, w ∈ EX, it follows that (G∂0(e), G∂1(e)) = (G∂0(w), G∂1(w)). Therefore,

∂0(e) = ∂0(w) and ∂1(e) = ∂1(w). Since X is a tree we have e = w, that is, f is

one to one on the edges also. It is clear that f is onto on the edges and vertices

alike. Finally, the action defined above is the one which is induced on Y by f ,

so f is a G-tree isomorphism.

5. Stabilizers of tree vertices

In this section we study the vertex stabilizers of trees with a countable number

of edges incident at each vertex and we prove that these groups are unsplittable.

Lemma 5.1: Let (Gi)i∈N be a family of groups and let

G =
∏

i∈N

Gi = {(g1, g2, . . .)/gi ∈ Gi, i = 1, 2, . . .}.

Suppose that G acts on a tree T without inversions. If there are elements

gi ∈ Gi which are elliptic for each i ∈ N, then the element g = (g1, g2, g3, . . .)

is elliptic too (where the element gi ∈ Gi is identified with the element gi =

(1, . . . , 1, gi, 1, . . .) ∈ G, with gi in the i place).

Proof. We remark that if p is an odd prime then 2np ≡ 1 mod p for some np ∈ N

(i.e. np = p − 1). Clearly, if k ∈ N then 2knp ≡ 1 mod p. If {p1, p2, . . .} are the

odd primes we consider the sequence ni = np1np2 · · ·npi
, i ∈ N. We have then

2ni ≡ 1mod pk for all k ≤ i.

We consider now the element h = (g2n1

1 , . . . , g2ni

i , . . .) and we prove that it

is elliptic: We suppose the opposite, that is, h is hyperbolic. If we identify

the element g2ni

i ∈ Gi with the element (1, . . . , 1, g2ni

i , 1, . . .) (with g2ni

i in the

i place), then h = g2n1

1 g2n2

2 . . . g2nk−1

k−1 hk where hk = (1, 1, .., 1, g2nk

k , g2nk+1

k+1 , . . .)



354 PROCOPIS PSALTIS Isr. J. Math.

for each k ∈ N. So, from Proposition 2.3, hk is a hyperbolic element with the

same translation length as h (so we can “forget” the first coordinates). But hk

is a 2nk -th power so its translation length is a multiple of 2nk . So 2nk divides

the translation length of h for all k, which is impossible. Now we suppose

that g is hyperbolic, so from Proposition 2.3 hg−1 is hyperbolic too. Since

hg−1 = (g2n1−1
1 , . . . , g2ni−1

i , . . .) and pi divides 2ni − 1, we have as before that

pi divides the translation length of hg−1 for all i, which is impossible. So g is

elliptic.

Corollary 5.2: If the groups Gi are unsplittable for each i ∈ N then the group

G =
∏

i∈N
Gi = {(g1, g2, . . .)/gi ∈ Gi, i = 1, 2, . . .} is unsplittable too.

Proof. We suppose that G acts on a tree T without inversions. Let g =

(g1, g2, . . .) ∈ G. We prove that the element g is elliptic. Since Gi is un-

splittable, gi is elliptic for each i ∈ N. So from Lemma 5.1 the element g is

elliptic too.

Lemma 5.3: Let X be a tree, G = Aut(X) and v a vertex of X . We suppose

that we have pairs (Xi, vi), where Xi is a subtree of X and vi a vertex of Xi

(root of Xi), for all i ∈ N such that V Xi ∩ V Xj = {vi} ∩ {vj} for all i, j ∈ N.

If Gv acts without inversions on a tree T , then there is no sequence of elements

gi ∈ Gv ∩ Gvi
for all i ∈ N, where gi(x) = x for all x /∈ V Xi (that is, every gi

acts non-trivially only on Xi) and gi is hyperbolic for each i ∈ N.

Proof. Let us suppose the opposite. Let l(gk) := lk > 0 (see (1.2)). Since the

gi’s commute, from Lemma 2.3 they have the same axis L. Replacing some

gi’s by gi
−1 if necessary we can arrange that all gi’s act on L by translation

in the same direction. We put nk+1 = k(l1 + l2 + · · · + lk + 1)nk for all k ∈ N

(i.e. n1 = 2) and

(1) h(x) =







gnk

k (x), if ∃ k ∈ N : x ∈ V Xk

x, if x ∈ V X −
⋃

i∈N
V Xi

(2) hk(x) =







gnr
r (x), if ∃ r ≥ k : x ∈ V Xr

x, if x ∈ V X −
⋃

i≥k V Xi.

Let l(h) = k0 ≥ 0. It is easy to see that

(3) h = gn1

1 gn2

2 · · · g
nk0

k0
hk0+1
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and that the elements gni

i and hk0+1 commute for all i ≤ k0. Since all gi, i =

1, 2, · · · , k0, act on L by translation in the same direction, we have that

l(gn1
1 gn2

2 · · · g
nk0

k0
) = n1l1+·+nk0lk0 > k0. From (3) and Lemma 2.3 we have that

hk0+1 is hyperbolic and translates L in the opposite direction from that of gni

i .

But hk0+1 is a power of nk0+1 (since ni/ni+1) and so l(hk0+1) is a multiple of

nk0+1. Moreover, nk0+1 = k0(l1+· · ·+lk0 +1)nk0 > l(gn1
1 · · · g

nk0

k0
)+l(h) so from

(3) we have that l(hk0+1) − l(gn1
1 · · · g

nk0

k0
) = k0 which is a contradiction.

5.4. Terminology. Let X be a tree and v, w ∈ V X. We define X[v,w] to be

the maximal subtree of X which contains the vertex w and does not contain

any other vertex of the path [v, w]. If A ⊆ E0(v), we define X(v,A) to be the

subtree of X which contains the vertex v and every vertex w such that the first

edge of the path [v, w] starting from v belongs to A. We denote by Ov
1 , Ov

2 , . . .

the orbits of E0(v) under the action of Gv. If g ∈ Gv we define gi ∈ Gv by

(4) gi(x) =







g(x), if x ∈ V X(v,Ov
i
)

x, if x /∈ V X(v,Ov
i
)

Finally, we put Gv,i=Aut(X(v,Ov
i
))v.

Definition 5.5: Let l be an infinite path of a tree X (a half line) starting from

vertex w and with vertex sequence w0 = w, w1, w2, . . .. If we denote by ei the

edge [wi, wi+1] then we say that the edge ei has the property P if there is some

g ∈ Aut(X[w,wi])(wi) such that gei 6= ei (gei /∈ l).

Remark 5.6: Let ei be an edge of the path l (as above). If on the tree X[w,wi]

there are card(Ii) orbits of edges (Ii ⊆ N) starting from the vertex wi, under the

action of group Aut(X[w,wi])(wi) then, we denote these orbits by O
[w,wi]
j , j ∈ Ii.

In the case where the edge ei does not have the property P , there is a unique

j0 ∈ Ii such that O
[w,wi]
j0

= {ei}.

Also, we denote by Xj

[w0,wi]
the tree X

(wi,O
[w0,wi]

j
)
and by Gw0,wi,j the vertex

group (Aut Xj

[w0,wi]
)(wi).

Theorem 5.7: Let X be a tree with a countable number of edges incident at

each vertex and let G = Aut(X). Then for each vertex v of X the group Gv is

unsplittable.
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Proof. Let the group Gv act on a tree T without inversions and g ∈ Gv be a

hyperbolic element.

Claim 1: There is a hyperbolic element of Gv which acts non trivially only on

some X(v,Ov
i
).

Proof of Claim 1. It is obvious that Gv =
∏

i∈N
Gv,i. If gi is the restriction of

g on the tree X(v,Ov
i
) as in (5.4)(4), then g = (g1, g2, . . .). From Lemma (5.1)

we may suppose that some of gi’s are hyperbolic. Let g1 be hyperbolic (acting

only on X(v,Ov
1 )).

We prove that card(Ov
1 ) 6= ℵ0. Suppose that card(Ov

1) = ℵ0.

Claim 2: There is a hyperbolic element of Gv which acts non-trivially only on

some subtree X(v,A) where A ⊆ Ov
1 and the set Ov

1 − A is infinite.

Proof of Claim 2. The restriction of g1 on Ov
1 is a permutation on the set Ov

1

that is, an element of the group S∞ = symm(Ov
1). If the restriction of g1 on Ov

1

is a finite permutation, then there is k ∈ N : gk
1 = 1 on Ov

1 . If v0, v1, v2, . . . are

the adjacent vertices of v, such that [v, vi] ∈ Ov
1 , then gk

1 ∈
∏

i∈N
Aut(X[v,vi])(vi).

From (5.1) there is a hyperbolic element h ∈ Aut(X[v,vi0 ])(vi0 ) for some i0 ∈ N.

Therefore, A = {[v, vi0 ]} and h is the required hyperbolic element.

If the restriction of g1 on Ov
1 is permutation with infinite support, then either the

restriction of g1 or the restriction of g2
1 on Ov

1 will be a product of two disjoint

permutations a, b ∈ symm(Ov
1) with infinite support. Indeed, the restriction of

g1 on Ov
1 is written as a product of disjoint cycles on symm(Ov

1 ). We distinguish

two cases for these cycles.

Case 1: Among these cycles there is at least one cycle with infinite support.

In this case, since the square of a cycle with infinite support is a product of

disjoint cycles with infinite support, the restriction of g2
1 on Ov

1 is written as a

product of two disjoint permutations a, b ∈ symm(Ov
1) with infinite support.

Case 2: Among these cycles there are no cycles with infinite support.

In this case there are ℵ0 such cycles. Then each one of the required permu-

tations a, b can be written as an infinite product of such cycles. Therefore, in

each case, the restriction of g1 or the restriction of g2
1 on Ov

1 will be a product

of two disjoint permutations a, b ∈ symm(Ov
1) with infinite support. We put
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A1 = support(a) (the elements of Ov
1 which are moved by a), A2 = support(b).

Then the element g1 or g2
1 can be written as a product of two elements h, f ∈ Gv

where h acts non-trivially only on X(v,A1) and f acts non trivially on X(v,A2)

as well. From Lemma 2.3, at least one of f, h is hyperbolic and hence the proof

of the claim above is complete.

Let h be the hyperbolic element obtained above. Since card(Ov
1 − A) = ℵ0,

we can write the set Ov
1 − A as disjoint union of sets Ω1, Ω2, . . ., where these

sets have the same cardinal number as the set A. Since Ov
1 consists of one

orbit of edges, we have that for any i ∈ N there is some ti ∈ Gv such that hti

(hti = t−1
i hti) acts non-trivially only on X(v,Ωi). Now, if we apply Lemma 5.3

on pairs (X(v,Ωi), v) it follows that, there is i ∈ N such that hti is an elliptic

element. But this is a contradiction, since h is hyperbolic.

Let us suppose now that card(Ov
1) = k < ∞ and let v1, . . . , vk be the end

points of the edges of the set Ov
1 (which start from v). Obviously there is some

r ≤ k such that gr
1 = 1 on Ov

1 and so gr
1 = h1h2 · · ·hk, where

(5) hi(x) =







gr
1(x), ifx ∈ X[v,vi]

x, otherwise

(hi is the restriction of gr
1 on X[v,vi]). The elements hi commute among each

other and therefore from Lemma (2.3) at least one of them will be hyperbolic.

Let h1 be hyperbolic. Then, as in Claim 1, for the tree X[v,v1], there is a

hyperbolic element of Aut(X[v,v1])(v1) ≤ Gv which acts on a tree of the form

Y(v1,R), where Y = X[v,v1] and R is an orbit of edges of the set E0(v1) on Y ,

under the action of group Aut(X[v,v1])(v1). As above, R must be finite. Working

in the same way, we create a path l with vertices w0 = v, w1 = v1, w2, . . . and a

sequence of hyperbolic elements fi of Gv where every fi acts non trivially only

on the tree X[w0,wi] (i = 1, 2, . . .). We denote by ei the edge [wi, wi+1] and we

distinguish two cases:

Case 1: There is a subsequence (enk
)k∈N of (en)n∈N, where all of its terms have

the property P . Therefore, for all k ∈ N there is an edge rnk
∈ E0(wnk

) − l,

such that enk
, rnk

belong to the same orbit under the action of group

Aut(X[w0,wnk
])(wnk

).

In this case, there is some tk ∈ Aut(X[w0,wnk
])(wnk

) such that, the hyperbolic

element f tk

nk+1 acts non-trivially only on the tree X[w0,∂1(rnk
)]. If we apply
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Lemma 5.3, on the pairs (X[w0,∂1(rnk
)], ∂1(rnk

)) at least one of the elements

f tk

nk+1 must not be hyperbolic. But this is a contradiction.

Case 2: There is no subsequence of (en)n∈N, where all of its terms have the

property P . In this case, there is some i0 ∈ N such that for all i ≥ i0 we

have gei = ei for all g ∈ Aut(X[w0,wi])(wi). That is, on the path with vertex

sequence wi0 , wi0+1, wi0+2, . . ., the edges ei for i ≥ i0 don’t have the property

P . So fi0+1 ∈
∏

j∈Ii0+1−{j0}
Gwi0 ,wi0+1,j (where j0 as in 5.6). Since fi0+1

is hyperbolic, from (5.1) there is j1 ∈ Ii0+1 − {j0} and a hyperbolic element

f(i0+1,j1) ∈ Gwi0 ,wi0+1,j1 with ei0+1 /∈ O
[w0,wi0+1]
j1

.

Working in the same way, we construct a sequence of hyperbolic elements

(f(i0+k,jk))k≥1 where every f(i0+k,jk) acts non-trivially only on the tree

Xjk

[wi0 ,wi0+k]. We obtain again a contradiction by (5.3).

Before the main application of Theorem 5.7, that is, Theorem 6.9, we mention

a simple application of this Theorem on rooted trees.

5.8. Rooted trees. A rooted tree (T, v0) is a tree with a fixed vertex v0 named

the root of the tree. An automorphism f of the rooted tree (T, v0) is an automor-

phism of the tree T such that f(v0) = v0. We denote the automorphism group

of the rooted tree (T, v0), Aut(T, v0). We have that, Aut(T, v0) = Aut(T )(v0).

We put Vn = {v ∈ V (T ) : d(v0, v) = n}. If v ∈ Vn we call “children” of v

the vertices of Vn+1 which are adjacent to v. We denote by c(v) the number of

children of the vertex v. A rooted tree (T, v0) of the form (k0, k1, k2, . . .) (where

ki ∈ N, 0 ≤ ki ≤ ∞) is a rooted tree where, for each n ∈ N, we have c(v) = kn

for all v ∈ Vn.

Corollary 5.9: (1) If (T, v0) is a rooted tree with a countable number

of children incident at each vertex, then Aut(T, v0) is an unsplittable

group.

(2) The group S∞ is unsplittable

(3) The wreath product Sk0 ≀ Sk1 ≀ . . ., where ki ∈ N, 0 ≤ ki ≤ ∞ is an

unsplittable group (where the length of the product can be infinite or

finite).

Proof. (1) It follows from Theorem 5.7, since Aut(T, v0) = Aut(T )(v0).
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(2) It follows from (1) that if we take (T, v0) to be the rooted tree of the form

(k0, k1, . . .), where k0 = ∞ and ki = 0 ∀i ≥ 1. Then S∞ = Aut(T, v0).

(3) Similarly, Sk0 ≀ Sk1 ≀ . . . = Aut(T, v0), where (T, v0) is of the form

(k0, k1, . . .)

6. Rigidity Theorem

In this section we show that the group G = Aut(X) determines the set

{Gx : x ∈ V X} and therefore the tree X as well, where X is a tree such

that iG(e) ≥ 3 for each edge e.

6.1. Terminology. Let X be a tree and x0 ∈ V X . For the rooted tree (X, x0)

we number the children of each vertex and thus we identify the vertices with

finite sequences as follows : if x ∈ Vr (as in Subsection 5.8) and i1, . . . , ir are

the branches we follow going from x0 to x, then we put x = (i1, . . . , ir).

Proposition 6.2: If X3 is the homogeneous tree of degree 3 at each vertex,

and ε0 is an end, then the set {Ggε0 : g ∈ G} = {Gε : ε an end of X3} is

uncountable.

Proof. Since the tree is homogeneous, it is obvious that {Ggε0 : g ∈ G} =

{Gε : ε an end of X3}. If x0 ∈ V X3, and we number the branches as in (6.1)

then the X-rays [x0, ε) correspond to the sequences of the form (i1, i2, . . .) with

ik ∈ {1, 2}, for k ≥ 2. Therefore, there are uncountable many such rays.

The above X-rays represent distinguished ends, therefore X3 has uncountably

many ends. For two such ends ε1, ε2 it is obvious that we have Gε1 6= Gε2 .

We remark that Gε1 , Gε2 are conjugate. Thus, the set {Gε : ε an end of X3} is

uncountable.

Corollary 6.3: Let X be a tree with iG(e) ≥ 3 for each e ∈ EX , and let ε be

an end. Then the group Gε has an uncountable number of conjugate subgroups.

Corollary 6.4: Let X be a tree with a countable number of edges incident

at each vertex and let G = Aut(X) with iG(e) ≥ 3 for each edge e. Then, if

x ∈ V X, the group Gx has a countable number of conjugate subgroups.

Proof. We define a map f : {gGxg−1 : g ∈ G} = {Ggx : g ∈ G} → V X with

f(Ggx) = gx. From Proposition 3.4 the tree X is a strict G-tree. Therefore, f
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is properly defined and it is apparently one to one, so the set {gGxg−1 : g ∈ G}

is countable.

Lemma 6.5: Let X be a tree with a countable number of edges incident at

each vertex and let G = Aut(X) with iG(e) ≥ 3 for each edge e. If K is an

unsplittable subgroup of G containing inversions, then K fixes some geometrical

edge {e, ē}. If K is also maximal unsplittable, then K = G{e,ē} i.e. K is the

stabilizer of a geometrical edge.

Proof. The subgroup K acts on the barycentric subdivision X ′ of X . From

Proposition 1.4 and the fact that K contains inversions of the tree X , we have

that K fixes a vertex v ∈ V X ′ − V X. Therefore, K ⊆ G{e,ē}, for the corre-

sponding geometrical edge. From Theorem 5.7 we have that G′
v is unsplittable

(G′ = Aut(X ′)) and thus the same holds for G{e,ē}. Therefore, if K is maximal

unspilttable then K = G{e,ē}.

Definition 6.6: Let G be a group. Then we define

(a) A(G) to be the set of subgroups H ≤ G satisfying:

(i) H is maximal among unplittable subgroups of G

(ii) H has a countable number of conjugates and

(iii) we have [H : H ∩ K] 6= 2 for every other such subgroup.

(b) E(G) to be the set of elements (K1, K2) ∈ A(G) × A(G) satisfying:

(i) K1 6= K2 and

(ii) the group K1 ∩ K2 is maximal among the subgroups of the form

L1 ∩ L2, with (L1, L2) ∈ A(G) × A(G) and L1 6= L2.

Proposition 6.7 (Separation of vertices): Let X be a tree and let G = Aut(X).

We suppose that X has a countable number of edges incident at each vertex

and iG(e) ≥ 3 for each edge e. Then, if Y is a tree with V Y = {Gx : x ∈ V X}

and EY = {(Gx, Gy) : x, y adjacent vertices of X}, we have A(G) = V Y .

Proof. Let x ∈ V X. Then, from Theorem 5.7 Gx is unsplittable. The group

Gx is also maximal with this property. Indeed, if we suppose that Gx ≤ K,

with K being unsplittable, we show that Gx = K. Since K is unsplittable from

Proposition 1.4 then one of the following cases holds:

The first case is that K fixes some vertex y, so Gx ≤ K ≤ Gy and since V X

is a strict G-set (iG(e) ≥ 3), it follows that x = y, therefore Gx = K.
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The second case is that K fixes a unique end ε of X , and so K =
⋃

y Ky for

y along [x, ε) approaching ε. For such a y, we have Gx ≤ Kx ≤ Ky ≤ Gy and

from strictness we have x = y. Thus, Ky = Gx for all these y, and so K = Gx.

The third case is that K contains an inversion and then K ⊆ G{e,ē} for some

geometrical edge (from Lemma 6.5). But then Gx ≤ G{e,ē}, which does not hold

in view of strictness. Also, for each x, y ∈ V X , we have that [Gx : Gx ∩Gy ] ≥ 3

if x 6= y and finally from Corollary 6.4, we have that V Y ⊂ A(G).

Now, if H ∈ A(G) from Proposition 1.4 we have the following cases:

(a) H ≤ Gx, and since Gx is unsplittable, we have that H = Gx

(b) H ≤ Gε (for a unique end) and then Hg ≤ Ggε ∀g ∈ G. But the set

{Ggε : g ∈ G} is uncountable and so there is g ∈ G-Gε, with Hg = H .

So H ≤ Ggε ∩ Gε, with gε 6= ε. That is, H fixes two different ends

which does not hold from Proposition 1.4.

(c) If H has inversions, then from Lemma 6.5, we have that H = G{e,ē}.

But then for x = ∂0(e), K = Gx we have [H : H ∩ K] = 2, which does

not hold. So V Y = A(G).

Proposition 6.8 (Separation of edges): Let X be a tree and let G = Aut(X).

We suppose that X has a countable number of edges incident at each vertex

and iG(e) ≥ 3 for each edge e. Then, if Y is a tree with V Y = {Gx : x ∈ V X}

and EY = {(Gx, Gy) : x, y adjacent vertices of X}, we have E(G) = EY .

Proof. Let (Gx, Gy) ∈ EY , that is, x, y are the extremities of an edge e (from

strictness we have Gx 6= Gy). If x′ 6= y′ are vertices and Gx ∩ Gy ≤ Gx′ ∩ Gy′ ,

then Ge = Gx ∩ Gy =: Gx,y ≤ Gx′ . We will show that x′ is an extremity of e.

If x′ is not an extremity of e, then y ∈ [x, x′] or x ∈ [y, x′]. Supposing the

second assumption holds, there is an edge w 6= e in [x, x′], with x being the

extremity. That is, w, e ∈ E0(x). Since Ge ≤ Gx′ , we have that Ge ≤ Gw and

from the strictness of E0(x) (see Proposition 3.4), we have e = w, which does

not hold. Therefore, x′ is an extremity of e and so is y′, that is, {x, y} = {x′, y′}.

Thus, EY ⊆ E(G).

Now, if (Gx, Gy) ∈ E(G) (also x 6= y), we will show that x, y are adjacent. If

we suppose the opposite, then for each edge e ∈ [x, y], we have that Gx ∩Gy ≤

Gx′ ∩ Gy′ , where x′ and y′ are the extremities of e. But we supposed that

(Gx, Gy) ∈ E(G), and so Gx,y = Gx′,y′ . Therefore, Ge ≤ Gx and Ge ≤ Gy,

whence {x, y} = {x′, y′}, that is, e = [x, y]. Thus x, y are adjacent and therefore

E(G) ⊆ EY .
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Rigidity Theorem 6.9: I) Let X be a tree and let G = Aut(X). We

suppose that X has a countable number of edges incident at each ver-

tex and iG(e) ≥ 3 for each edge e. Then, if Y is a tree with V Y =

{Gx : x ∈ V X} and EY = {(Gx, Gy) : x, y adjacent vertices of X}, we

have:

(a) A(G) = V Y .

(b) E(G) = EY .

(c) The map σ : X → Y with σ(x) = Gx is an isomorphism of G-trees.

(That is, the group G determines the tree X .)

(d) The map ad : G → Aut(G) is an isomorphism.

II) Let X1, X2 be trees with G1 = Aut(X1), G2 = Aut(X2) such that

iG1(e) ≥ 3 for each e ∈ EX1 and iG2(w) ≥ 3 for each w ∈ EX2.

Then if a : G1 → G2 is a group isomorphism, there is a unique tree

isomorphism σ : X1 → X2 such that a = ad(σ).

Proof. I) (a),(b) and (c) follow immediately from Propsition 4.2,Proposi-

tion 6.7 and Proposition 6.8. (d) It suffices to show that ad is one to

one and onto.

As far as onto is concerned: If a ∈ Aut G it is obvious that K ∈

A(G) if and only if a(K) ∈ A(G) and (K, L) ∈ E(G) if and only if

(a(K), a(L)) ∈ E(G). Therefore, for each x ∈ V X there is unique

x′ ∈ V X such that a(Gx) = Gx′ (due to strictness), and we put

a′(x) = x′. That is, the map a′ : V X → V X is properly defined and

preserves the adjacency of the vertices. Therefore the map a′extends to

an automorphism of tree X .

We observe that we have a(Ggx) = Ga(g)a′(x), so a′(gx) = a(g)a′(x)

for each g ∈ G, x ∈ V X, (1).

Now we can show that ad(a′) = a: If g ∈ G, x ∈ V X, then from

(1) we have that (ad(a′)(g))(a′(x)) = a′(gx) = a(g)a′(x). Therefore,

ad(a′)(g) = a(g), and so ad(a′) = a.

The map ad is one to one: That is, if a, b ∈ Aut(G), with a = b, we

show that a′ = b′. Indeed, if x ∈ V X, then a(Gx) = b(Gx), therefore

Ga′(x) = Gb′(x). Thus, a′(x) = b′(x), and so a′ = b′.

II) If a : G1 → G2 is a group isomorphism, it is obvious that K ∈

A(G1) if and only if a(K) ∈ A(G2) and (K, L) ∈ E(G1) if and only if

(a(K), a(L)) ∈ E(G2). So for each x ∈ V X1 there is a unique x′ ∈ V X2
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such that a(G1x) = G2x′ (due to strictness) and we put a′(x) = x′.

That is, the map a′ : V X1 → V X2 is properly defined and preserves

the adjacency of the vertices. Therefore, the map a
′

extends to an

isomorphism of trees a′ : X1 → X2.

We observe that we have a(G1gx) = G2a(g)a′(x), so a′(gx) = a(g)a′(x)

for each g ∈ G, x ∈ V X, (2).

Now we can show that ad(a′) = a: If g ∈ G1, x ∈ V X1 then from (2)

we have (ad(a′)(g))(a′(x)) = a′(gx) = a(g)a′(x). Therefore, ad(a′)(g) =

a(g) and so ad(a′) = a.

Uniqueness: If a, b : G1 → G2 are isomorphisms with a = b, we show

that a′ = b′. Indeed, if x ∈ V X1, then a(G1x) = b(G1x), therefore,

G2a′(x) = G2b′(x). Thus, a′(x) = b′(x) and so a′ = b′.

7. A Topological Rigidity Theorem

Let X be a tree with G = Aut(X), which has a countable number of edges

incident at each vertex.

In this section, we extend the Rigidity Theorem (6.9) even in the case where

iG(e) ≥ 2 for every edge e of X .

In the case where there is e ∈ EX such that iG(e) = 1, we can easily construct

finite trees which are totally different but still have a trivial automorphism

group.

We have iG(e) ≥ 2 for all e ∈ V X, then the Rigidity Theorem does not always

hold. For example, we can take a tree X with G = Aut(X) and iG(e) ≥ 2 for

all e ∈ V X. If X is the tree obtained from X by subdividing those edges e

for which there is some g ∈ G such that ge = e, then Aut(X) = Aut(X), but

X ≇ X (as long as X has inversions).

That is, if X1, X2 are two trees with G1 = Aut(X1), G2 = Aut(X2) where

G1 ≈ G2 and iG1(e) ≥ 2 for all e ∈ EX1, iG2(w) ≥ 2 for all w ∈ EX2, then X1

is not always isomorphic to X2.

In this section we prove that X1 ≃ X2.

7.1. Terminology. Let X be a tree and let G = Aut(X). We suppose that

X has a countable number of edges incident at each vertex and iG(e) ≥ 2 for

each edge e. We define X to be the tree obtained from X by subdividing those
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edges e of X for which there is g ∈ G such that ge = e (it is obvious that

Aut(X) = G).

We define Y to be the tree with

V Y = {Gx : x ∈ V X} and EY = {(Gx, Gy) : x, y adjacent vertices of X}.

Obviously (4.2) holds for the tree X .

Definition 7.2: Let G be a group. Then we define

(a) A(G) to be the set of subgroups H ≤ G satisfying:

(i) H is maximal among unplittable subgroups of G and

(ii) for every family {Hi}i∈I , |I| ≥ 2 consisting of distinguished maximal

unsplittable subgroups of G with H 6= Hi for all i ∈ I it must hold that

H  
⋃

i∈IHi.

(b) E(G) to be the set of elements (K, K ′) ∈ A(G) × A(G) satisfying:

(i) K 6= K ′

(ii) the group K ∩K ′ is maximal among the supgroups of the form L∩L′,

with (L, L′) ∈ A(G) × A(G) and L 6= L′ and

(iii) 〈K, K ′〉 = 〈K,
⋃

L∈A(G) L : K ∩ L = K ∩ K ′〉.

Proposition 7.3 (Separation vertices): Let X be a tree and let G = Aut(X).

We suppose that X has a countable number of edges incident at each vertex

and iG(e) ≥ 2 for each edge e. Then, if Y is a tree with V Y = {Gx : x ∈ V X}

and EY = {(Gx, Gy) : x, y adjacent vertices of X}, we have A(G) = V Y .

Proof. Taking into account that there are no inversions on tree X and working

as in Proposition 6.7 we can show that the groups Gx, x ∈ V X are maximal

unsplittable subgroups of G. Suppose that for some x ∈ V X, there is a family

{Hi}i∈I , |I| ≥ 2 consisting of distinguished maximal unsplittable subgroups of

G with Gx 6= Hi for all i ∈ I such that Gx ⊆
⋃

i∈IHi. Since the groups Hi

are unsplittable, then from Proposition 1.4, each one of Hi fixes some vertex

or end of X . This is a contradiction, since the group Gx contains at least one

element which moves all edges of the set E0(x) (iG(e) ≥ 2 for each edge e).

Thus V Y ⊆ A(G).

Now, if H ∈ A(G), then from Proposition 1.4 and Theorem 5.7 we have

H = Gx for some x, or else H fixes a unique end ε. From Proposition 1.4 (3)

and the fact that V Y ⊆ A(G), it necessarily holds that H = Gx for some x.

Thus A(G) = V Y .
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Lemma 7.4: Let X be a tree with G = Aut(X) which has a countable number

of edges incident at each vertex and iG(e) ≥ 2 for each edge e. Let x, y ∈ V X

with x 6= y, such that the group Gx,y := Gx ∩ Gy is maximal among groups of

the form Ga,b, where a, b ∈ V X with a 6= b. Then exactly one of the following

cases holds:

(I) x, y are vertices of an axis L with a sequence of vertices (vi)i∈Z and edges

(ei)i∈Z where ei = [vi, vi+1], such that orbGvi
(ei) = {ei, ei−1} for all i ∈ Z (and

so iG(ei) = iG(ei) = 2).

(II) x, y are vertices of a segment T with three vertices v1, v2, v3 and edges

e1 = [v1, v2], e2 = [v2, v3], where orbGv2
(e2) = {e2, e1}, iG(e1) ≥ 3 and

iG(e2) ≥ 3.

(III) x, y are adjacent vertices.

Proof. Let x = v1, v2, . . . , vn = y be the sequence of the vertices of the path

[x, y] and ei = [vi, vi+1], i = 1, . . . , n − 1.

Obviously we have Gx,y ≤ Gx,vi
for all i = 2, . . . , n− 1 and so Gx,y = Gx,vi

for

all i = 2, . . . , n− 1 and therefore orbGvi
(ei) = {ei, ei−1} for all i = 2, . . . , n− 1,

orbGvi+1
(ei) = {ei+1, ei}, for all i = 1, . . . , n−2. If n ≥ 4, then necessarily Case

(I) holds. If n ≤ 3, then Case (I), Case (II) or Case (III) can hold.

Remark 7.5: Keeping the above notation, we set GL = 〈Gvi
: i ∈ Z〉 the

group which is generated by the vertex groups of the vertices of axis L and

GT = 〈Gv1 , Gv2 , Gv3〉 the group which is generated by the vertex groups of the

vertices of segment T .

Now, we work on the case of axis L. We prove that 〈Gv0 , Gv1〉 = GL. Indeed,

we have Gv2 = Ga
v0

for an appropriate a ∈ Gv1 . Then every g ∈ Gv2 is written

in the form g = a−1ha for an appropriate h ∈ Gv0 . Therefore Gv2 ⊆ 〈Gv0 , Gv1〉.

Now, similarly Gv3 ⊆ 〈Gv1 , Gv2〉 ⊆ 〈Gv0 , Gv1〉. Thus inductively Gvi
⊆

〈Gv0 , Gv1〉 for all i ≥ 0. The proof is similar in the case where i ≤ −1 and

thus 〈Gv0 , Gv1〉 = GL. Obviously, Gvk
* 〈Gvi

, Gvj
〉 for i < k < j and so, we

have〈Gvi
, Gvj

〉 = GL if and only if j = i + 1, that is only groups of adjacent

vertices can generate the group GL. The same result also holds for the segment

T , that is 〈Gv1 , Gv2〉 = 〈Gv2 , Gv3〉 = GT and 〈Gv1 , Gv3〉 6= GT .

Proposition 7.6: Let X be a tree and let G = Aut(X). We suppose that

X has a countable number of edges incident at each vertex and iG(e) ≥ 2 for
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each edge e. Then, if Y is a tree with V Y = {Gx : x ∈ V X} and EY =

{(Gx, Gy) : x, y adjacent vertices of X}, we have E(G) = EY .

Proof. Let (Gx, Gy) ∈ E(Y ). Since iG(e) ≥ 2 for each edge e, we have Gx 6= Gy.

The group Gx,y is maximal among subgroups of the form Ga,b with a, b ∈ V X

and a 6= b. Indeed, let a, b ∈ V X with a 6= b and let Gx,y ≤ Ga,b. If

{x, y} = {a, b}, then we obviously have that Gx,y = Ga,b. If there are only

three distinguished vertices among x, y, a, b, for example x = a, then the vertices

x, y, b are vertices of a segment T or an axis L as in Lemma 7.4.

If the vertices x, y, a, b are distinguished, then these vertices are vertices of

an axis L as in Lemma 7.4 (I). Using the properties of the segment T or axis L

we can easily prove that Gx,y = Ga,b. Let z ∈ V X with Gx,y = Gx,z. Then the

vertices x, y, z belong to an axis L or to a segment T as in Lemma 7.4. Let z

be a vertex of L or T , different from x, y, then Gx,y = Gx,z and so from (7.5)

we have 〈Gx, Gy〉 = 〈Gx,
⋃

z∈V X Gz : Gx,y = Gx,z〉. Therefore E(Y ) ⊆ E(G).

Finally, E(G) ⊆ E(Y ) follows from Lemma 7.4 and Remark 7.5.

Now, if we work as in Teorem 6.9 for trees X, X1, X2 in place of trees

X, X1, X2 respectively, then the next Theorem follows immediately.

Topological Rigidity Theorem 7.7: I) Let X be a tree and let G = Aut(X). We

suppose that X has a countable number of edges incident at each vertex and

iG(e) ≥ 2 for each edge e. Then, if Y is a tree with V Y = {Gx : x ∈ V X} and

EY = {(Gx, Gy) : x, y adjacent vertices of X}, we have:

(a) A(G) = V Y

(b) E(G) = EY

(c) The map σ : X → Y with σ(x) = Gx is an isomorphism of G-trees (That

is, the group G determines the tree X)

(d) The map ad : G → Aut(G) is an isomorphism.

II) Let X1, X2 be trees with G1 = Aut(X1), G2 = Aut(X2) such that iG1(e) ≥

2 for each e ∈ EX1 and iG2(w) ≥ 2 for each w ∈ EX2. Then if a : G1 → G2

is a group isomorphism, there is a unique tree isomorphism σ : X1 → X2 such

that a = ad(σ).
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[13] D. V. Znŏıko, The automorphism groups of regular trees, MatematicheskĭıSbornik. No-
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